链式前向星存图

本质上是用链表实现的邻接表,核心代码如下:

int cnt=1;
void add(int u, int v, int w)//链式前向星存图
{
	a[cnt] = {v, w, head[u]};
    //a[cnt].w = w;//这三行与上面一行等价
    //a[cnt].v = v;
    //a[cnt].next = head[u];
    head[u] = cnt++;
}
for (int i = head[u]; i; i = a[i].next)//遍历
{}

// head[u] 和 cnt 的初始值都为 -1
void add(int u, int v) {
  nxt[++cnt] = head[u];  // 当前边的后继
  head[u] = cnt;         // 起点 u 的第一条边
  to[cnt] = v;           // 当前边的终点
}

// 遍历 u 的出边
for (int i = head[u]; ~i; i = nxt[i]) {  // ~i 表示 i != -1
  int v = to[i];
}

示例代码:

#include <iostream>
#include <vector>

using namespace std;

int n, m;
vector<bool> vis;
vector<int> head, nxt, to;

void add(int u, int v) {
  nxt.push_back(head[u]);
  head[u] = to.size();
  to.push_back(v);
}

bool find_edge(int u, int v) {
  for (int i = head[u]; ~i; i = nxt[i]) {  // ~i 表示 i != -1
    if (to[i] == v) {
      return true;
    }
  }
  return false;
}

void dfs(int u) {
  if (vis[u]) return;
  vis[u] = true;
  for (int i = head[u]; ~i; i = nxt[i]) dfs(to[i]);
}

int main() {
  cin >> n >> m;

  vis.resize(n + 1, false);
  head.resize(n + 1, -1);

  for (int i = 1; i <= m; ++i) {
    int u, v;
    cin >> u >> v;
    add(u, v);
  }

  return 0;
}

复杂度

应用

存各种图都很适合,但不能快速查询一条边是否存在,也不能方便地对一个点的出边进行排序。

优点是边是带编号的,有时会非常有用,而且如果 cnt 的初始值为奇数,存双向边时 i ^ 1 即是 i 的反边(常用于网络流)。
各种图的存储:
../../../ZZZ-Misc/Z-Attachment/images-old-ACM/Z-attachment/Pasted image 20231221125830.png